VERTEBRAL FRACTURE INITIATIVE
Part II

Recognition and reporting of vertebral fractures

By Judith Adams, Harry K. Genant, Christian Roux and Leon Lenchik
Recognition and reporting of vertebral fractures

Topics to be covered

• Technical considerations for radiographs
• Vertebral fracture shape recognition
• Semi-quantitative visual grading examples
• Radiographic osteopenia or osteoporosis and differential diagnosis
• Other imaging methods or analysis
• Differential diagnosis of fractures versus deformities
Background

- Worldwide, a substantial percentage of vertebral fractures are not diagnosed by radiologists or clinicians\(^1\)

- It is likely that this contributes to unnecessary pain and suffering and to the under treatment of osteoporosis

- Identification of patients with a vertebral fracture is important because the presence of prevalent fracture greatly increases the risk of future fracture

- Recent widespread approval of effective treatments for patients with osteoporotic vertebral fractures

\(^1\) Delmas PD et al. (2005) JBMR 20: 557-563
Technical considerations

Ensure:
- Overlap T12 and L1
- Spine parallel to film

Film focus distance = 100cm

So avoid false biconcave endplates ‘bean can effect’

AP view may add useful information
Technical considerations

Orthograde

X-ray beam parallel to vertebral endplate

Oblique

Endplate oblique to X-ray beam causes 'bean can' effect of biconcave endplates
Technical considerations

Under-penetrated

Simulates ‘osteosclerosis’

Over-penetrated

Simulates ‘osteoporosis’
Technical considerations

Under-penetrated
Simulates ‘osteosclerosis’

Over-penetrated
Simulates ‘osteoporosis’
Technical considerations

Typical patient effective radiation doses for radiologic examinations

<table>
<thead>
<tr>
<th>Type of exposure</th>
<th>Effective dose (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thoracic spine</td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>0.4</td>
</tr>
<tr>
<td>Lateral</td>
<td>0.3</td>
</tr>
<tr>
<td>Lumbar spine</td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>0.7</td>
</tr>
<tr>
<td>Lateral</td>
<td>0.3</td>
</tr>
<tr>
<td>PA Chest</td>
<td>0.02</td>
</tr>
<tr>
<td>Pencil beam DXA (spine)</td>
<td><0.001</td>
</tr>
<tr>
<td>Fan beam DXA (spine)</td>
<td>~ 0.01</td>
</tr>
<tr>
<td>Quantitative computed tomography (QCT): spine</td>
<td>0.06</td>
</tr>
<tr>
<td>Average annual natural background radiation (NBR)</td>
<td>2.4</td>
</tr>
<tr>
<td>Return transatlantic flight (16 hours total flight time)</td>
<td>~0.07</td>
</tr>
</tbody>
</table>

Challenges in vertebral fracture assessment shape recognition

Key to visual identification of fracture and non-fracture deformity is knowledge of the normal range and variation in vertebral shape

Genant HK et al. (1995) Vertebral Fracture in Osteoporosis, eds.
Note the similarity of vertebral shape and size among contiguous levels.
Semi-quantitative visual grading of vertebral fractures

Grade 0: normal, non fractured vertebra

Grade 1: mild fracture with approximately 20-25% reduction in anterior, middle and posterior relative to the same or adjacent vertebrae.

Grade 2: moderate fracture with approximately 25-40% reduction in anterior, middle and posterior relative to the same or adjacent vertebrae.

Grade 3: severe fracture with approximately >40% reduction in anterior, middle and posterior relative to the same or adjacent vertebrae.

Genant HK et al. (1993) JBMR 8(9): 1137-48
Vertebral shapes and grading

These changes in shape are often combined

% change in shape

Grade 1
~20-25%

Grade 2
~26-40%

Grade 3
~40% +

The higher the grade of fracture the higher the risk of future fracture
Examples of SQ vertebral fractures

Grade 0
Normal

Grade 1
Mild

Grade 2
Moderate

Grade 3
Severe
SQ mild fractures

Loss of contiguity and parallelism of adjacent endplates
SQ mild vs. severe fractures

Mild

Severe
SQ incident mild fracture
SQ incident moderate fracture
SQ incident
severe & moderate fractures
Radiographic `osteoporosis' and `osteopenia'

Differential diagnosis

<table>
<thead>
<tr>
<th>Left Column</th>
<th>Right Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-menopausal</td>
<td>Osteogenesis imperfecta</td>
</tr>
<tr>
<td>Osteomalacia</td>
<td>Hepatic insufficiency</td>
</tr>
<tr>
<td>Hyperparathyroidism</td>
<td>Celiac Disease</td>
</tr>
<tr>
<td>Hypercortisolism</td>
<td>Multiple myeloma</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>Metastatic disease</td>
</tr>
<tr>
<td>Renal insufficiency</td>
<td>Drug induced</td>
</tr>
<tr>
<td>Chronic immobilization</td>
<td></td>
</tr>
<tr>
<td>Cystic Fibrosis</td>
<td></td>
</tr>
</tbody>
</table>
Radiographic `osteopenia’ and `osteoporosis’

Osteopenia with relative accentuation of the cortical outline

If these features are present suggest central DXA bone densitometry
Radiographic `osteopenia’ and `osteoporosis’

Prominent vertical trabecular giving striated appearance

If these features are present suggest central DXA bone densitometry
Post-menopausal osteoporotic fractures

Severe radiographic osteoporotic vertebral fractures at multiple levels
Severe osteomalacia

The severely osteomalacic bone is soft and bends giving biconcave endplates ['cod-fish' vertebrae]
Glucocorticoid-induced osteoporosis with vertebral fractures

Marginal condensation of the endplates from impaction and exuberant callus formation, seen only in extreme cases
Multiple myeloma

Severe radiographic ‘osteoporosis’ with multiple subtle lytic radiolucencies
Other imaging methods or analyses

- Quantitative Morphometry (QM)
- Computed Tomography (CT)
- Magnetic Resonance Imaging (MRI)
- Dual-energy X-ray Absorptiometry (DXA)

Roles:

- To facilitate detection and/or grading of vertebral fracture
- To confirm if vertebral fracture is old, new or due to pathology other than osteoporosis (MRI)

Link TM et al. (2005) Europ Radiol 15: 1521-1532
Quantitative Morphometry (QM) with six-point placements on radiographs

Shape of the vertebra is defined by placing six points on superior and inferior endplate at the front, mid and posterior margins.

The anterior (A), middle (M) and posterior (P) heights and various ratios calculated.
QM with six-point placements on radiographs

Easy point placement Difficult point placement
Six-point video-assisted quantitative morphometry using electronic imaging

QM is used routinely in clinical research and selectively in clinical practice to confirm and grade suspected vertebral fractures
Multi-slice computed tomography in diagnosis and characterization of vertebral fracture
Multi-Detector Computed Tomography (MDCT)

Fractures in midline sagittal reformations

Fractures No fractures

Courtesy of T Link, University of California, San Francisco
Multiple myeloma

Lateral thoracic spine radiograph and midline sagittal spine reformation MDCT showing diffuse lytic areas with vertebral fractures and destruction of cortical margins, a sinister feature in vertebral fractures.
Fortuitous identification of vertebral fractures in whole body CT

In patients having MDCT of thorax and/or abdomen for other clinical reasons routine midline sagittal reformations will identify vertebral fractures not suspected clinically and not evident on transverse axial sections.
Fortuitous identification of vertebral fractures in chest radiography

Lateral chest radiograph with Grade 2 moderate fracture lower thoracic spine
MRI assessment of vertebral fractures - differentiation of malignant versus benign vertebral fracture
Benign vertebral fractures/deformities in MRI

- Abnormal signal is parallel to fracture
- Flat posterior borders of fractured vertebrae
- Other vertebral deformities have normal signal
- Para-vertebral soft tissue mass is rare
- Normal signal in non-fractured vertebrae
- Abnormal signal of fractures stabilizes in months
- Low signal on diffusion-weighted images (DWI)
Benign fracture on sagittal MRI

T1

T2

DWI

Courtesy Andrea Baur-Melnyk, Ludwig Maximilian University of Munich, Germany
Malignant vertebral fracture on MRI

- Abnormal signal in non-fractured vertebrae
- Abnormal signal of entire fractured vertebrae
- Convex posterior border of fractured vertebra
- No vertebral deformities with normal signal
- Occasional para-vertebral soft tissue mass
- Abnormal signal progresses to destruction
- High signal on diffusion weighted images (DWI)
Malignant fracture on sagittal MRI
Multiple metastases by MRI

- Pathological fracture of T11
- Posterior bulging of posterior margin
- Sinister feature in atraumatic vertebral fracture
- T2 weighted sagittal MRI scan
- Heterogenous signal intensity of other vertebrae
Differential diagnosis between fractures and deformities
Vertebral fracture versus deformity

- All vertebral fractures cause deformity (change in shape) of vertebrae
- Not all changes in vertebral shape (deformities) are vertebral fractures

Important that fractures are differentiated from deformities. Clear and unambiguous words must be used in reports (e.g. fractures, not collapse etc)
Differential diagnosis of changes in the shape of vertebral bodies

<table>
<thead>
<tr>
<th>Vertebral fractures</th>
<th>Vertebral deformities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteoporotic (low trauma)</td>
<td>Developmental</td>
</tr>
<tr>
<td>Traumatic</td>
<td>(short vertebral height, ‘butterfly’ vertebra and other abnormalities of spinal</td>
</tr>
<tr>
<td>Pathological (neoplastic,</td>
<td>segmentation, ‘block’ vertebrae)</td>
</tr>
<tr>
<td>hemopoietic diseases and infections)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal variants (‘cupid’s bow’, anterior step deformity)</td>
</tr>
<tr>
<td></td>
<td>Scheuermann’s disease (osteocondritis)</td>
</tr>
<tr>
<td></td>
<td>Spondylisis (degenerative disc disease)</td>
</tr>
<tr>
<td></td>
<td>Metabolic</td>
</tr>
<tr>
<td></td>
<td>(osteamalacia, Paget’s disease)</td>
</tr>
</tbody>
</table>
Deformities
Developmental anomalies

Cupid’s bow (arrows): smooth curvature inferior L4 endplate
Deformities
Congenital anomalies

Notochordal remnant

‘Block’ vertebrae with vestigial disc space
Deformities
Congenital anomalies - Fusion
Acquired deformities

Scheuermann’s diseases
Numerous adjacent vertebrae elongated & wedged, irregular endplates, Schmorl’s nodes, kyphosis

Schmorl’s nodes
Herniation of disc material tend to be anterior or posterior in endplate, with sclerotic margins

Senile spondylosis
Adjacent vertebrae elongated, wedged endplate sclerosis and osteoophytois
Acquired deformities - scheuermann’s

Numerous adjacent vertebrae elongated and wedged, irregular endplates, Schmorl’s nodes, kyphosis
Non-osteoporotic vertebral deformities

Remote (old) trauma

Hemangioma
Algorithm-Based Qualitative (ABQ) method

- Endplate depression is central to definition of a vertebral fracture
- ABQ is a qualitative method developed to avoid labeling vertebral bodies with short vertebral height as fractured
- Reliable, reproducible on both standard radiographs and VFA images
- Predictive validity (eg prospective fracture prediction) has yet to be demonstrated and compared to the SQ method
Algorithm-based Qualitative (ABQ) Assessment

1. Start

 - Depression of endplate? (Yes/No)
 - No: Short vertebral height? (Yes/No)
 - No: Normal
 - Yes: Scheuermann’s, childhood fracture, scoliosis, variants
 - Yes: Close to centre of endplate? (Yes/No)
 - No: Concave depression? (Yes/No)
 - No: Variants: anterior: step-like endplate in thoracic vertebrae, posterior: Cupid’s bow or balloon disc in lumbar vertebrae
 - Yes: Whole endplate depressed within ring? (Yes/No)
 - Yes: Trauma, tumour, metabolic disease? (Yes/No)
 - Yes: Focused area: Schmorl’s node
 - No: Non-fracture deformity, developmental variant, non-osteoporotic fracture, other disease / condition
 - No: Check for oblique projection or scoliosis
 - Yes: Osteoporotic fracture
WHO Fracture Risk Assessment Tool (FRAX®)

http://www.shef.ac.uk/FRAX/tool

Presence of vertebral Fracture can influence the FRAX calculator

Kanis JA et al. (2005) Osteoporos Int 16: 581-589
Summary: reporting vertebral fractures

- Scrutinise all images for such fractures
- Use clear, unambiguous and accurate terminology e.g. vertebral fracture not ‘collapse’ and/or other terms
- Give number and grades of fractures: mild =1, moderate=2, severe=3
- Indicate if osteoporotic, traumatic or pathological and suggest further appropriate imaging, if relevant
- If osteoporotic in origin, suggested measures should be considered to reduce future fracture risk
- If the change in shape is not due to a fracture, use the term ‘deformity’ and suggest cause (congenital anomaly, normal variant, acquired disorder)