Bone Health in Hematologic Stem Cell Transplant Patients

Prof David Kendler
Bone Health in Hematologic Stem Cell Transplant Patients

David Kendler MD FRCPC
Professor of Medicine (Endocrinology)
University of British Columbia
Vancouver, Canada
Agenda

• Epidemiology of bone health in hematologic stem cell transplant (HSCT) patients
• Risks for bone loss in HSCT patients
• Bone protection in HSCT patients
• An algorithm for bone health management
Introduction

• Increasing numbers of allogeneic stem cell transplant patients

• Increased survival from improved acute and chronic care

• Bone loss is most rapid in the 1st 3 to 6 months after stem cell transplant with greatest loss at the hip suggesting cortical bone loss

• Fragility fractures remain a long-term serious complication of allogeneic stem cell transplant.
Osteopenia in patients with HSCT

• 29% of HSCT survivors had osteopenia at spine and 52% osteopenia femoral neck (Cohen A et al. JBMR 2004 19:1919 – 1932)

• Early rapid bone loss more so at hip and spine, incompletely recovered at hip

• Cortical bone loss predominates

Grigg AP et al. JCEM 2006, 91:3835 - 3843
Early decreases in BMD in HSCT patients

- 137 HSCT patients between 2011 and 2014 with baseline and day 100 DXA
- Mean lumbar spine day 100 decreases of 3%, total hip of 4.6%, and femoral neck 4.7%. Incidence of osteoporosis increased from 12% to 18% and osteopenia increased from 41% to 50%
- Women have greater loss than men; glucocorticoid was associated with bone loss at total hip
- Day 100 trabecular bone score (TBS) was significantly lower than baseline and lower in patients with glucocorticoid exposure.

Trabecular bone score; an indicator of trabecular bone architecture
BMD and TBS changes after HSCT

• Seoul patients 2009 to 2015
• Decreases in femoral neck (5.48%) and total hip (6.84%) between transplant and twelve-month; TBS stable.
 – 24 patients
• Small increases in lumbar spine and total hip BMD in patients between 12 months and 24 months; TBS stable.
 – 44 patients

Osteoporosis in HSCT patients

- 258 French patients between 2005 and 2016 with baseline, 6 month, and 3 year BMD
- DXA diagnostic of osteoporosis in 17% at baseline, 22.8% at 6 months, and 17.5% at 3 years.
- Incident fractures in 4.1% patients at 6 months and 5.7% of patients at 3 years
- Improvement at spine at 3 years superior to improvements at hip at 3 years.
HSCT and fractures

- 15 year MD Anderson study of 7620 HSCT patients showed 8% incident fractures
- Relation to age, malignancy type, and allogeneic versus autologous transplant
- Fracture risk 8 fold higher than age and sex specific fracture incidence rates from the US population

Pundole X et al. J Clin Oncol 2016; 33 1364 - 1370
HSCT and fractures

- In 4160 Taiwanese cancer patients without HSCT and 1040 patients with HSCT
- Relative risk of fracture 1.4 in the HSCT group
- Vertebral fractures 68% of the fracture events

Lin J et al. 2017 Oncotarget 8, 34811 – 34819
Risks for bone loss in HSCT

Table 1 Risk factors for bone loss pre- and post-stem cell transplantation

<table>
<thead>
<tr>
<th>Pre-HSCT risk factors</th>
<th>Post-HSCT risk factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female sex [5]</td>
<td>Calcium and vitamin D insufficiency leading to secondary hyperparathyroidism [7]</td>
</tr>
<tr>
<td></td>
<td>G-CSF treatment [12]</td>
</tr>
<tr>
<td></td>
<td>Renal wasting of calcium or magnesium [13]</td>
</tr>
</tbody>
</table>

- Calcineurin inhibitors
- Interactions between transplant stem cells and bone cells
- Decreased osteocyte viability
- Avascular necrosis in 10% to 20% HSCT survivors

Osteo-immunology

- Crosstalk between the immune system and bone cells
- RANK RANKL OPG responsible for osteoclast formation, function, survival.
 - TNF alpha stimulates RANKL and inhibits osteoblast formation and function
 - IL1, IL7, IL23 also implicated in stimulating osteoclasts
- Trials of mesenchymal stem cells systemic infusion
 - may have benefits to GVHD and directly or indirectly to bone health
- GM-CSF support after chemotherapy and its use to mobilize hematopoietic stem cells
 - may increase the number of osteoclast precursors, enhancing posttransplant bone loss
Hypogonadism

- Ovarian failure occurs in 70% to 90% of young women after HSCT
- Male hypogonadism less common
- Glucocorticoid can lead to central suppression of gonadotropin with secondary hypogonadism
Evaluation of bone health in HSCT patients

• Clinical risk factors
• BMD hip and spine
• Spine radiographs
• Evaluation of secondary cause of bone loss
Risks for bone loss and fracture: pre-existing

- Menopause
- Age
- Prior fracture
- Parental hip fracture
- Smoking
- Alcohol
- Rheumatoid arthritis
- Bone density
- Falls

FRAX has a moderate ability to predict fractures in the HSCT population (Pundole X et al. Arch Osteoporosis 2018. 13:38)
Treatment of HSCT patients: calcium, vitamin D, menopausal hormone therapy

- General nutritional support
- Calcium 1200 mg elemental from combination diet and supplement
- Vitamin D3 2000 IU by supplement, consider loading dose
- Exercise (walking type)
- Menopausal hormone therapy in appropriate patients
Vitamin D deficiency in HSCT patients

- Decreased sun exposure
- GI GVHD may impair vitamin D absorption
- Glucocorticoid, calcineurin inhibitors, renal insufficiency can interfere with vitamin D metabolism
- Median pre-transplant 25 hydroxy vitamin D 40 nmol per litre (16 ng/mL),
 - 70% of patients vitamin D insufficient.
Bisphosphonates post HSCT

- Pamidronate stabilized spine BMD and attenuated femoral neck bone loss (5.1% versus 7.8%) in 99 HSCT patients at 12 months (Kananen K et al. JCEM 2005, 90:3877–3885)
Meta-analysis of bisphosphonate in HSCT

Table 3a. Mean differences comparing bisphosphonate with no bisphosphonate therapy for bone mineral density of the lumbar spine at 12 months

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Bisphosphonates</th>
<th></th>
<th>No bisphosphonates</th>
<th></th>
<th>Mean difference</th>
<th>Mean difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>s.d.</td>
<td>Total</td>
<td>Mean</td>
<td>s.d.</td>
<td>Total</td>
</tr>
<tr>
<td>Grigg et al.</td>
<td>2.3</td>
<td>8</td>
<td>49</td>
<td>-3.3</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>Hari et al.</td>
<td>4.1</td>
<td>7</td>
<td>11</td>
<td>-5.14</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>Jang et al.</td>
<td>0.7</td>
<td>1.7</td>
<td>16</td>
<td>-6.46</td>
<td>1.4</td>
<td>20</td>
</tr>
<tr>
<td>Kananan et al.</td>
<td>0.25</td>
<td>1.551</td>
<td>33</td>
<td>-2.9</td>
<td>7.3826</td>
<td>33</td>
</tr>
<tr>
<td>Tauchmanova et al.</td>
<td>5.7</td>
<td>1.7</td>
<td>15</td>
<td>-3.4</td>
<td>1.4</td>
<td>16</td>
</tr>
<tr>
<td>Tauchmanova et al.</td>
<td>9.8</td>
<td>7</td>
<td>15</td>
<td>-2.1</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Tauchmanova et al.</td>
<td>7.2</td>
<td>5.2737</td>
<td>30</td>
<td>-3.7</td>
<td>1.9678</td>
<td>30</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>169</td>
<td>163</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: CI = confidence interval. Test for overall effect: Z = 6.90 (P < 0.00001). Heterogeneity: Tau² = 6.97; χ² = 50.24, d.f. = 6 (P < 0.00001); I² = 88%.

Table 3b. Mean differences comparing bisphosphonate with no bisphosphonate therapy for bone mineral density of the femoral neck at 12 months

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Bisphosphonates</th>
<th></th>
<th>No bisphosphonate</th>
<th></th>
<th>Mean difference</th>
<th>Mean difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>s.d.</td>
<td>Total</td>
<td>Mean</td>
<td>s.d.</td>
<td>Total</td>
</tr>
<tr>
<td>Grigg et al.</td>
<td>-2.8</td>
<td>6.9</td>
<td>49</td>
<td>-10.5</td>
<td>6.6</td>
<td>30</td>
</tr>
<tr>
<td>Hari et al.</td>
<td>2.7</td>
<td>7</td>
<td>11</td>
<td>-6.1</td>
<td>3.5</td>
<td>19</td>
</tr>
<tr>
<td>Kananen et al.</td>
<td>-4.2</td>
<td>6.6616</td>
<td>33</td>
<td>-6.2</td>
<td>9.8339</td>
<td>33</td>
</tr>
<tr>
<td>Tauchmanova et al.</td>
<td>1.3</td>
<td>1.2</td>
<td>15</td>
<td>-5.1</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Tauchmanova et al.</td>
<td>6.47</td>
<td>7</td>
<td>15</td>
<td>-2.3</td>
<td>3.5</td>
<td>15</td>
</tr>
<tr>
<td>Tauchmanova et al.</td>
<td>3.3</td>
<td>2.7557</td>
<td>30</td>
<td>-3.75</td>
<td>1.5911</td>
<td>30</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>153</td>
<td>143</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: CI = confidence interval. Heterogeneity: Tau² = 0.59; χ² = 7.63, d.f. = 5 (P = 0.18); I² = 34%. Test for overall effect: Z = 11.79 (P < 0.00001).
Pretransplant zoledronic acid randomized trial

- 80 HSCT patients receiving pretransplant ZOL with subsequent day 100, day 180, day 270 infusions according to glucocorticoid or >5% bone loss protocol
- Less bone loss compared to historical controls

Grigg A et al. Bone Marrow Transplantation 2017. 52, 1288 – 1293
Denosumab post HSCT

- 33 female HSCT patients (within 3 years of HSCT) with osteoporosis mean age 52.6 given denosumab 60 mg 6 monthly for 12 months
- Increased spine bone density 4.39%, femoral neck bone density 3.11% and total hip bone density 1.97%

Jeong C et al. Int J Endo 2020 3410921
Other therapies

• **Estrogen**: trials have consistently shown an attenuation of posttransplant bone loss

• **SERM**: milder antiresorptive activity but no studies in HSCT patients

• **PTH and derivatives**: stimulation of bone resorption may release growth factors retained in bone. Teriparatide contraindicated in patients with prior skeletal irradiation or malignant disorders of the skeleton.

• **Romosozumab** has dual action stimulating bone formation and inhibiting resorption. Trials are required.
Management algorithm for HSCT patients

Management algorithm for HSCT patients

Pre HSCT

Patients undergoing allogeneic stem cell transplant*

General measures:
- Regular physical activity
- Vitamin D3 1000-2000 IU/d
- Ca intake 1000-1200 mg/d diet/supplement

Initial Assessment:
- DXA hip and spine, prior osteoporotic fracture, age, menopause status, risk factors
- Ca, PO₄, ALP, TSH, eGFR, 25-OHD

T-score ≥ -1.5 at spine, total hip, femoral neck
T-score < -1.5 at spine, total hip, femoral neck

Management algorithm for HSCT patients

T-score > -1.5 at spine, total hip, femoral neck

T-score < -1.5 at spine, total hip, femoral neck

Pharmacologic intervention
Zoledronic acid
Denosumab possible

Consider pharmacologic intervention if patient taking glucocorticoid for GVHD

Repeat DXA hip and spine

Management algorithm for HSCT patients

- **Day 100**

 - Repeat DXA hip and spine

 - **T-score ≥ -1.5**
 - Repeat DXA and assessment 1 year post transplant

 - **T-score < -1.5**
 - Pharmacologic intervention: Zoledronic acid, Denosumab possible

Summary

• There is increased utilization of HSCT for a variety of hematologic malignancies
• Improvements in acute and chronic care leads to more long-term survivors.
• Bone health is one of the more significant morbidities post HSCT.
• Consistent and more aggressive monitoring and treatment of bone health in HSCT patients is required to improve long-term outcomes.
Q&A

Prof David Kendler
THANK YOU

On behalf of IOF, we thank you for your participation in this webinar
Our vision is a world without fragility fractures, in which healthy mobility is a reality for all.

Join us