

CSA Edition

Bone Health in Hematologic Stem Cell Transplant Patients Prof David Kendler

Bone Health in Hematologic Stem Cell Transplant Patients

David Kendler MD FRCPC **Professor of Medicine (Endocrinology)** University of British Columbia

Vancouver, Canada

Agenda

- Epidemiology of bone health in hematologic stem cell transplant (HSCT) patients
- Risks for bone loss in HSCT patients
- Bone protection in HSCT patients
- An algorithm for bone health management

Introduction

- Increasing numbers of allogeneic stem cell transplant patients
- Increased survival from improved acute and chronic care
- Bone loss is most rapid in the 1st 3 to 6 months after stem cell transplant with greatest loss at the hip suggesting cortical bone loss
- Fragility fractures remain a long-term serious complication of allogeneic stem cell transplant.

Osteopenia in patients with HSCT

- 29% of HSCT survivors had osteopenia at spine and 52% osteopenia femoral neck (Cohen A et al. JBMR 2004 19:1919 – 1932)
- Early rapid bone loss more so at hip and spine, incompletely recovered at hip
- Cortical bone loss predominates

Early decreases in BMD in HSCT patients

- 137 HSCT patients between 2011 and 2014 with baseline and day 100 DXA
- Mean lumbar spine day 100 decreases of 3%, total hip of 4.6%, and femoral neck 4.7%. Incidence of osteoporosis increased from 12% to 18% and osteopenia increased from 41% to 50%
- Women have greater loss than men; glucocorticoid was associated with bone loss at total hip
- Day 100 trabecular bone score (TBS) was significantly lower than baseline and lower in patients with glucocorticoid exposure.

Trabecular bone score; an indicator of trabecular bone architecture

BMD and TBS changes after HSCT

- Seoul patients 2009 to 2015
- Decreases in femoral neck (5.48%) and total hip (6.84%) between transplant and twelve-month; TBS stable.
 - 24 patients
- Small increases in lumbar spine and total hip BMD in patients between 12 months and 24 months; TBS stable.

- 44 patients

Osteoporosis in HSCT patients

- 258 French patients between 2005 and 2016 with baseline, 6 month, and 3 year BMD
- DXA diagnostic of osteoporosis in 17% at baseline, 22.8% at 6 months, and 17.5% at 3 years.
- Incident fractures in 4.1% patients at 6 months and 5.7% of patients at 3 years
- Improvement at spine at 3 years superior to improvements at hip at 3 years.

HSCT and fractures

- 15 year MD Anderson study of 7620 HSCT patients showed 8% incident fractures
- Relation to age, malignancy type, and allogeneic versus autologous transplant
- Fracture risk 8 fold higher than age and sex specific fracture incidence rates from the US population

Α 0.125 Cumulative Incidence 0.100 0.075 Age 0.050 Aae 0.025 = ≤ 50 years > 50 years 100 0 50 150 200 Time to Fracture (months) в 0.30 -0.25 Cumulative Incidence 0.20 Indication Multiple myeloma Tumor type 0.15 Other hematologic malignancies Solid organ tumors and others 0.10 0.05 0 50 100 150 200 Time to Fracture (months) С 0.125 Cumulative Incidence 0.100 0.075 SCT type 0.050 HSCT type 0.025 Allogeneic Autologous 0 100 50 150 200 Time to Fracture (months)

Pundole X et al. J Clin Oncol 2016; 33 1364 - 1370

HSCT and fractures

- In 4160 Taiwanese cancer patients without HSCT and 1040 patients with HSCT
- Relative risk of fracture 1.4 in the HSCT group
- Vertebral fractures 68% of the fracture events

Risks for bone loss in HSCT

Table 1 Risk factors for bone loss pre- and post-stem cell transplantation

Pre-HSCT risk factors Post-HSCT risk factors

Advanced age [5]

Graft-versus-host disease [6]

Female sex [5] Calcium and vitamin D insufficiency leading to secondary hyperparathyroidism [7]

Chemotherapy [8] Glucocorticoids [9

Hypogonadism [10]

Glucocorticoids [9] Renal dysfunction [11] G-CSF treatment [12]

Renal wasting of calcium or magnesium [13]

- Calcineurin inhibitors
- Interactions between transplant stem cells and bone cells
- Decreased osteocyte viability
- Avascular necrosis in 10% to 20% HSCT survivors

Kendler D et al. Osteoporos Int (2018) 29:2597–2610

Osteo- immunology

- Crosstalk between the immune system and bone cells
- RANK RANKL OPG responsible for osteoclast formation, function, survival.
 - TNF alpha stimulates RANKL and inhibits osteoblast formation and function
 - IL1, IL7, IL23 also implicated in stimulating osteoclasts
- Trials of mesenchymal stem cells systemic infusion
 - may have benefits to GVHD and directly or indirectly to bone health
- GM-CSF support after chemotherapy and its use to mobilize hematopoietic stem cells
 - may increase the number of osteoclast precursors, enhancing posttransplant bone loss

Hypogonadism

- Ovarian failure occurs in 70% to 90% of young women after HSCT
- Male hypogonadism less common
- Glucocorticoid can lead to central suppression of gonadotropin with secondary hypogonadism

Evaluation of bone health in HSCT patients

- Clinical risk factors
- BMD hip and spine
- Spine radiographs
- Evaluation of secondary cause of bone loss

Risks for bone loss and fracture: preexisting

- Menopause
- Age
- Prior fracture
- Parental hip fracture
- Smoking
- Alcohol
- Rheumatoid arthritis
- Bone density
- Falls

Hor	ne Calculation Tool	▼ Paper Charts FAQ	References	CE Mark English
Calculation	Tool			
acculation	1001			
lease answer the qu	estions below to calculate t	he ten year probability of fracture	e with BMD.	*
Country: Canada	Name/ID:		About the risk factors	
	Yet: 90 years) or Date of Birth of Birth: M: D:	 Secondary osteoporosis Alcohol 3 or more units/day Femoral neck BMD (g/cm²) 	No Yes No Yes	Weight Convers Pounds 🔶 kg Con
2. Sex	○ Male ○ Female	Select BMD 🗸		
3. Weight (kg) 4. Height (cm)		Clear	3	Height Convers
5. Previous Fracture	● No ○ Yes			Inches 🔶 cm
6. Parent Fractured Hip	●No ○Yes			Con
7. Current Smoking	● No ○ Yes			
8. Glucocorticoids	● No ○ Yes			01268318
9. Rheumatoid arthritis				01200310

FRAX has a moderate ability to predict fractures in the HSCT population (Pundole X et al. Arch Osteoporosis 2018. 13:38)

Treatment of HSCT patients: calcium, vitamin D, menopausal hormone therapy

- General nutritional support
- Calcium 1200 mg elemental from combination diet and supplement
- Vitamin D3 2000 IU by supplement, consider loading dose
- Exercise (walking type)
- Menopausal hormone therapy in appropriate patients

Vitamin D deficiency in HSCT patients

- Decreased sun exposure
- GI GVHD may impair vitamin D absorption
- Glucocorticoid, calcineurin inhibitors, renal insufficiency can interfere with vitamin D metabolism
- Median pre-transplant 25 hydroxy vitamin D 40 nmol per litre (16 ng/mL),
 - 70% of patients vitamin D insufficient.
 - (Joseph R. et al 2011 American Journal of Hematology 86:954 956)

Bisphosphonates post HSCT

 Pamidronate stabilized spine BMD and attenuated femoral neck bone loss (5.1% versus 7.8%) in 99 HSCT patients at 12 months(Kananen K et al. JCEM 2005, 90:3877 – 3885)

Meta-analysis of bisphosphonate in HSCT

Study or subgroup	Bisphosphonates		No bisphosphonates			Mean difference	Mean difference		
	Mean	s.d.	Total	Mean	s.d.	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
Grigg et al. ¹⁹	- 2.8	6.9	49	- 10.5	6.6	30	10.8%	7.70 (4.65, 10.75)	
Hari et al.23	2	7	11	- 6.1	3.5	19	5.7%	8.10 (3.67, 12.53)	
Kananen <i>et al.</i> 27	-4.2	6.6616	33	- 6.2	9.8339	33	6.7%	2.00 (-2.05, 6.05)	
Tauchmanova et al. ¹⁴	1.3	1.2	15	- 5.1	2	16	34.7%	6.40 (5.25, 7.55)	*
Tauchmanova et al. ²⁹	6.47	7	15	- 2.3	3.5	15	7.0%	8.77 (4.81, 12.73)	+
Tauchmanova et al. ¹⁶	3.3	2.7557	30	- 3.75	1.5911	30	35.0%	7.05 (5.91, 8.19)	
									-20 -10 0 10 20
Total (95% CI)			153			143	100.0%	6.74 (5.62, 7.86)	Favours [No BP's] Favours [BP's]

Spine

Femoral neck

Pundole et al Bone Marrow Transplantation (2017) 663 - 670

Pretransplant zoledronic acid randomized trial

- 80 HSCT patients receiving pretransplant ZOL with subsequent day 100, day 180, day 270 infusions according to glucocorticoid or >5% bone loss protocol
- Less bone loss compared to historical controls

density. Values expressed as mean ± s.d.

Denosumab post HSCT

- 33 female HSCT patients (within 3 years of HSCT) with osteoporosis mean age 52.6 given denosumab 60 mg 6 monthly for 12 months
- Increased spine bone density 4.39%, femoral neck bone density 3.11% and total hip bone density 1.97%

Other therapies

- Estrogen: trials have consistently shown an attenuation of posttransplant bone loss
- SERM: milder antiresorptive activity but no studies in HSCT patients
- PTH and derivatives: stimulation of bone resorption may release growth factors retained in bone.
 Teriparatide contraindicated in patients with prior skeletal irradiation or malignant disorders of the skeleton.
- Romosozumab has dual action stimulating bone formation and inhibiting resorption. Trials are required.

Management algorithm for HSCT patients

Kendler D et al. Osteoporos Int (2018) 29:2597-2610

Management algorithm for HSCT patients

Management algorithm for HSCT patients

Summary

- There is increased utilization of HSCT for a variety of hematologic malignancies
- Improvements in acute and chronic care leads to more long-term survivors.
- Bone health is one of the more significant morbidities post HSCT.
- Consistent and more aggressive monitoring and treatment of bone health in HSCT patients is required to improve long-term outcomes

Prof David Kendler

THANK YOU

On behalf of IOF, we thank you for your participation in this webinar

Our vision is a world without fragility fractures, in which healthy mobility is a reality for all.

Join us

